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I review some recent results of the determination of the vacuum wave functional in Monte Carlo
simulations of SU(2) lattice gauge theory.

I. Introduction

A number of important events that had shaped mod-
ern physics was commemorated in 2014. Maxwell pre-
sented his theory of electromagnetism to the Royal So-
ciety 150 years ago; non-abelian gauge theories were
proposed by Yang and Mills 60 years ago; the Brout–
Englert–Higgs mechanism, the quark model, and Bell in-
equalities were 50 years old; CP violation was experi-
mentally discovered 50 years ago as well. In my talk
I would like to draw attention to another anniversary:
In February 1979, the first paper trying to calculate the
ground-state wave functional of Yang–Mills (YM) theory
was submitted to Nuclear Physics by Jeff Greensite [1].
Thirty-five years have passed since then, but the problem
still defies satisfactory solution.

Formulation of the problem The vacuum wave
functional (VWF) Ψ0 of quantum chromodynamics in
the Schrödinger representation depends on quark fields
of six flavours with three colours, each represented by a
Dirac four-component bispinor, and on eight four-vector
gluon fields – this is altogether 104 fields at each point
in space (not taking constraints from gauge invariance
into account). This is a formidable object from both
mathematical and practical point of view. To simplify
the problem, one can reduce the number of colours from
three to two, omit quarks, discretize space (i.e. formu-
late the theory on a lattice), and eventually go to lower-
dimensional spacetime. One can hope [2] that the re-
sulting model captures at least gross features of the full
theory, in particular information on the mechanism of
colour confinement.

Omitting quarks, the SU(2) YM Schrödinger equation
in (d+1) dimensions in temporal gauge looks very simple:

ĤΨ[A] =

∫
ddx

[
− 1

2

δ2

δAak(x)2
+ 1

4F
a
ij(x)2

]
Ψ[A]

= EΨ[A]. (1)

Physical states are simultaneously required to satisfy
Gauß’ law: (

δac∂k + gεabcAbk
) δ

δAck
Ψ[A] = 0. (2)
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A few well-known facts If we set the gauge cou-
pling g to 0, the Schrödinger equation (1) reduces to that
of (three copies of) electrodynamics and its ground-state
solution is known to be [3]:

Ψ0[A]
g=0
= (3)

N exp

[
− 1

4

∫
ddx ddy F aij(x)

(
δab√
−∆

)
xy

F bij(y)

]
.

Due to Eq. (2), the ground state must be gauge-invariant.
The simplest form consistent with Eq. (3) is

Ψ0[A] = (4)

N exp

[
− 1

4

∫
ddx ddy F aij(x) Kab(x, y) F bij(y)

]
,

where K is some adjoint-representation kernel that re-
duces, in the limit g → 0, to (−∆)−1/2.

At long-distance scales, one expects the VWF to be
the state of magnetic disorder [1, 4, 5]:

Ψ0[A] ≈ N exp

[
− 1

4 µ

∫
ddx F aij(x) F aij(x)

]
. (5)

This is also called the dimensional-reduction (DR) form.
With such a VWF, the computation of a spacelike loop in
(d+ 1) dimensions reduces to the calculation of a Wilson
loop in YM theory in d (euclidean) dimensions. If the
vacuum were of the DR form for YM theories in both
(3 + 1) and (2 + 1) dimensions, then these would be con-
fining, since the theory in 2 euclidean dimensions exhibits
the area law. However, this cannot be the whole truth,
for various reasons. Via DR, one gets e.g. the area law
for colour charges from all representations r of the gauge
group, and string tensions σr of the corresponding poten-
tials are proportional to eigenvalues of the r-th quadratic
Casimir operator. Approximate Casimir scaling is ob-
served at short and intermediate distances, but at large
distances, due to colour screening , string tensions depend
on the N -ality of the representation (see Fig. 1 for illus-
tration).
Approaches to the problem A number of different

strategies were adopted in attempts to determine the YM
vacuum wave functional (see Ref. [6] for a more extensive
set of references):

1. Strong-coupling expansion of the VWF [7, 8].

2. Weak-coupling expansion of the VWF [9–12].
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FIG. 1. Sketch of static potentials in SU(2): At short
distances the potentials are Coulomb-like. At large dis-
tances, colour charges of higher-representation sources can
be screened by gluons. Potentials of integer representations
become asymptotically flat, while asymptotic string tensions
for all representations with half-integer j are the same as for
j = 1/2. Casimir scaling of string tensions is expected only
at intermediate distances, at least in some models of confine-
ment.

3. Formulation of the theory in cleverly selected vari-
ables and expansion of the VWF in terms of these
new variables [13–19].

4. Variational Ansatz for the VWF in a certain gauge;
determination of its parameters by minimizing the
expectation value of the YM hamiltonian (see e.g.
[20, 21]).

5. Guess of an approximate form of the VWF and
tests of its consequences (see [22], [23–25]).

II. Flatland: A romance of two dimensions1

I will start with the problem in the simplest setting:
with SU(2) Yang–Mills theory in “Flatland”, i.e. in
three spacetime dimensions. That model deserves at-
tention not only because it is more tractable than the
realistic case, but also due to its relevance to the high-
temperature phase of chromodynamics in four dimen-
sions.2

1 This section’s heading paraphrases the title of a novella [26]
by English schoolmaster and theologian Edwin Abbott Abbott,
writing pseudonymously as A Square, which describes a two-
dimensional world inhabited by geometric figures.

2 Another good justification – not scientific, but utterly human
– for investigating the model in lower dimensions was given by
Feynman in his lecture at the 1981 EPS–HEP Conference in Lis-
bon [27]: “Of course, understanding something in 2 + 1 dimen-

Hints on the form of the VWF In the lattice
formulation, a systematic strong coupling expansion of
the YM VWF is of the form Ψ0 = N exp(−R[U ]), where
the function R in the exponent is an expansion in terms
of closed loops, products of link matrices U along closed
contours on the lattice [7]. Guo, Chen and Li [8] com-
puted the first few terms of this expansion and showed
that for slowly varying fields they organize themselves
into the following series3:

R[U ] ∝ µ0Tr [B2]− µ1Tr [B(−D2)B] + . . . (6)

Here µ0 and µ1 are functions of the lattice spacing a and
the coupling constant g, B = F12 is the colour magnetic
field strength, and D2 = Dk · Dk is the adjoint covariant
laplacian, where Dk[A] denotes the covariant derivative
in the adjoint representation. The first term of Eq. (6)
corresponds to the dimensional-reduction vacuum wave
functional (5). One can imagine that an expansion of the
form (6) might come from the wave functional

Ψ0[A] = (7)

N exp

{
− 1

2

∫
d2x d2y Ba(x) Kabxy

[
−D2

]
Bb(y)

}
,

with the kernel K, introduced in Eq. (4), being a func-
tional of the adjoint covariant laplacian.

A similar hint may be deduced also from the ap-
proach of Karabali et al. [13]. They combine two com-
ponents of the gauge potential into complex-valued fields
{A, Ā} = 1

2 (A1 ± iA2) and introduce new variables, a

matrix-valued field M ∈ SL(N, C), related to A, Ā via

A = − (∂zM) M−1, Ā = M†−1
(
∂z̄M

†) , (8)

where {z, z̄} = x1±ix2. M transforms covariantly, M→
ΩM, under a gauge transformation Ω, and is used to
define gauge-invariant variables:

H = M†M, Ja = Tr
(
T a(∂zH)H−1

)
, (9)

through which one expresses the hamiltonian, inner prod-
ucts of physical states, and the VWF.

Karabali et al. further show that the part of the VWF
bilinear in variables Ja, when expressed through original
colour magnetic fields, takes on the form:

Ψ0[A] ≈ N exp

[
− 1

2

∫
d2x d2y × (10)

Ba(x)

(
1√

−∆ +m2 +m2

)
xy

Ba(y)

]
.

sions does not imply that you understand it in 3+1 dimensions,
but, after all I have lots of time, I have tenure, so I can do what-
ever I want.” I would avoid writing such a justification into a
grant proposal, but find it nevertheless very reasonable.

3 The trace in this symbolic expression includes sums over colour
indices and lattice sites.
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FIG. 2. λ0 vs. β from simulations of 3D euclidean SU(2)
lattice gauge theory at various couplings β and lattice volumes
L3. The best fit to data is λ0 ∝ β−1.44, which differs from
the expected β−2 dependence and indicates that λ0 diverges
in the continuum limit.

This expression, however, is not gauge invariant, but one
can assume that higher-order terms in Ja might turn the
ordinary laplacian in Eq. (10) into the adjoint covari-
ant laplacian, and thus convert Eq. (10) again into the

form (7) with K =
(√
−D2 +m2 +m2

)−1
.

The proposal of Samuel Almost 20 years ago,
Samuel [22] put forward a simple vacuum wave functional
of the form (7), interpolating between weak-coupling,
Eq. (3), and DR, Eq. (5), limits:

Ψ0[A] = N exp

[
− 1

2

∫
d2x d2y × (11)

Ba(x)

(
1√

−D2 +m2
0

)ab
xy

Bb(y)

 .
However, this particular form may be flawed if taken
at face value: there are hints that the adjoint covari-
ant laplacian needs to be regularized. We have com-
puted its eigenvalues in numerical simulations of the
three-dimensional euclidean SU(2) YM theory on a lat-
tice. (−D2) has a positive definite spectrum, finite with
a lattice regulator. If its lowest eigenvalue λ0 were finite
in the continuum limit, it should scale, as a function of
β = 4/g2, as β−2 for large β. Our data (see Fig. 2) in-
dicate that limβ→∞ β2λ0(β) → ∞, i.e. λ0 diverges for
typical configurations in the continuum limit.

The GO proposal We proposed [23] another simple
form with a seemingly small, but crucial difference from
that of Samuel:

Ψ0[A] = N exp

[
− 1

2

∫
d2x d2y × (12)

Ba(x)

(
1√

(−D2 − λ0) +m2

)ab
xy

Bb(y)

 .
As a remedy to the problem mentioned above, it is sug-
gested here to subtract from the covariant laplacian its
lowest eigenvalue. The proposed VWF contains a sin-
gle free parameter, a mass m, that should vanish in the
free-field limit (for g → 0). The expression is assumed
to be regularized on a lattice, and we use the simplest
discretized form of the adjoint covariant laplacian:(
−D2

)ab
xy

= 4 δabδxy (13)

−
2∑
k=1

[
Uabk (x) δy,x+k̂ + U†bak (x− k̂) δy,x−k̂

]
,

where

Uabk (x) = 1
2Tr

[
σaUk(x)σbU†k(x)

]
(14)

and Uk(x) are the link matrices in the fundamental rep-
resentation.

We have provided a number of (semi)analytic argu-
ments in favour of the proposed VWF (12):

1. Ψ0 reproduces the VWF of electrodynamics,
Eq. (3), in the free-field limit (for g → 0).

2. The proposed form is a good approximation to the
true vacuum also for strong fields constant in space
and varying only in time [23]. Indeed, if we put
such a physical system into a finite volume V , its
lagrangian and hamiltonian are:

L = 1
2V

(
2∑
k=1

∂t ~Ak · ∂t ~Ak − g2S2

)
, (15)

Ĥ = − 1

2V

2∑
k=1

∂2

∂ ~Ak · ∂ ~Ak
+ 1

2g
2VS2, (16)

where S = | ~A1 × ~A2|. It is natural to look for the
ground-state solution of the Schrödinger equation
ĤΨ = EΨ in the form of 1/V expansion:

Ψ0 = exp[−V R0 −R1 − V −1R2 − . . .]. (17)

The leading term has to satisfy

V

[
−

2∑
k=1

∂R0

∂ ~Ak
· ∂R0

∂ ~Ak
+ g2S2

]
= 0 (18)

[ + terms of O(1/V )],

and is easily found to be:

R0 = 1
2g

S2

L
, (19)
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where L =

√
~A1 · ~A1 + ~A2 · ~A2. The colour vec-

tors ~A1 and ~A2 define a plane in colour space,

we can choose e.g. ~A1 = (A1, 0, 0), ~A2 =
(A2 cos θ,A2 sin θ, 0), then S = |A1A2 sin θ|. We
assume A1,A2 to be of the same order O(A). The
contribution of R0 to Eq, (17) will be non-negligible
if V R0 ∼ O(1), i.e. R0 ∼ O(1/V ).

On the other hand, for strong enough fields, Dack ≈
gεabcAbk and(
−D2

)ab
xy
≈ (20)

g2δ2(x− y)
[
( ~A2

1 + ~A2
2)δab −Aa1Ab1 −Aa2Ab2

]
≡ g2δ2(x− y) Zab,

where

Z = (21) A2
2 sin2 θ −A2

2 sin θ cos θ 0
−A2

2 sin θ cos θ A2
1 +A2

2 cos2 θ 0
0 0 A2

1 +A2
2

 .

The leading term in our VWF (12) then is

Ψ0 = N exp

[
− 1

2gV
S2√

ζ3 − ζ1 + (m/g)2

]
, (22)

where ζ1 and ζ3 are respectively the smallest and
largest eigenvalues of the above matrix Z. For
strong constant fields (|gA| � m,λ0), both (m/g)2

and ζ1 ∼ R0 ∼ O(1/V ) are negligible w.r.t. ζ3 =
L2, and the expression (22) agrees with Eqs. (17)
and (19).

3. If we split the colour magnetic field strength B(x)
into “fast” and “slow” components, the part of
the VWF that depends on Bslow reduces to the
magnetic-disorder (DR) form (5). The fundamen-
tal string tension is then easily computed as σF =
3mg2/16 = 3m/4β. Non-zero value of the param-
eter m then implies non-zero σF , i.e. confinement
of fundamental-representation colour charges.

4. One can take the mass m in the wave functional as
a free variational parameter and compute (approx-
imately) the expectation value of the YM hamil-
tonian (see Sec. VI of Ref. [23] for details). The
result, expressed as a sum over eigenvalues of the
adjoint covariant laplacian in the thermalized gauge
field A, is:

〈Ĥ〉 = (23)

1
2

〈∑
n

(√
λn − λ0 +m2 + 1

2

λ0 −m2

√
λn − λ0 +m2

)〉
.

In the abelian free-field case, the optimal value of m
equals λ0 and λ0 goes to 0 in the continuum limit,
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FIG. 3. Vacuum energy density vs. mass parameter m from
numerical simulations on a lattice with L = 16 at coupling
β = 6. The minimum is away from zero, at roughly m = 0.3.
This gives a string tension which is a little low for β = 6, but
the disagreement should not be taken too seriously, because
the estimate for vacuum energy, Eq. (23), is only approximate.

so the theory is non-confining. In the non-abelian
case one can evaluate the energy density 〈Ĥ〉/L2

numerically in Monte Carlo simulations, and finds
that a non-zero (finite) value of m is energetically
preferred. A typical result is displayed in Fig. 3.

Some numerical evidence All above arguments
are encouraging, but quantitative tests are needed to gain
more confidence in the proposed form of the VWF. Such
tests are provided by numerical lattice simulations. For
readers not familiar with the method, basics is summa-
rized in App. A.

We have compared a set of physical quantities com-
puted in two ensembles of lattice gauge-field configura-
tions:

I. Monte Carlo lattices: Ensemble of two-dimensional
slices of configurations generated by Monte Carlo
simulations of three-dimensional euclidean SU(2)
lattice gauge theory with standard Wilson action
(A4) at a coupling β = 4/g2; from each configura-
tion, only one (random) slice at fixed euclidean time
was taken. These configurations are distributed
with the weight proportional to the square of the
true VWF of the theory, |Ψtrue[U ]|2.

II. “Recursion” lattices: Ensemble of independent two-
dimensional lattice configurations generated with
the probability distribution given by the (square of
the) VWF (12), with m and g2 fixed to get the cor-
rect value of the fundamental string tension. These
configurations can be generated efficiently by the
recursion method proposed (and described in de-
tail) in Ref. [23]. Essential points of the method
are sketched in App. B.
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agree within a few (< 6) per cent.

We computed in both ensembles the mass gap [23],
the Coulomb-gauge ghost propagator, and the colour
Coulomb potential [24]. The latter two quantities are of
particular interest because of their role in the so-called
Gribov–Zwanziger mechanism of confinement [28, 29].
Example results are shown in Figs. 4, 5, and 6. The
agreement between quantities measured in MC and re-
cursion ensembles is very reasonable.4
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FIG. 5. The Coulomb-gauge ghost propagator at β = 6 on
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4 The agreement in the case of the colour Coulomb potential is less
satisfactory and we attribute it to the existence of exceptional
configurations that are extremely difficult to fix to the Coulomb
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FIG. 6. The colour-Coulomb potential at β = 9 on 322 lattice,
computed from configurations with a cut |V (0)| < 20.

One can also measure (i.e. compute in numerical sim-
ulations) amplitudes of various sets of test configurations
in the true YM vacuum, and compare them with predic-
tions based on the proposed VWF (12). The method
for computing relative weights of configurations was pro-
posed by Greensite and Iwasaki long ago [31] and will
be described in Sec. III. The technique was applied in
(2 + 1) dimensions to sets of abelian plane wave config-
urations of varying amplitude and wavelength, and sets
of non-abelian constant configurations [6]. The obtained
data agree with expectations based on Eq. (12), but sim-
ilar agreement was obtained also for some other forms of
wave functionals which simplify to a DR form at large
scales (see Ref. [6]).

Summarizing this section, we found analytic and nu-
merical evidence that in D = 2+1 dimensions our Ansatz
for the VWF seems a fairly good approximation to the
true ground state of the theory. However, we do not live
in Flatland , our world is Spaceland , so I will switch for
the rest of this contribution to pure Yang–Mills theory
in four spacetime dimensions.

III. Version in 3D or Spaceland5

The extension of the proposed vacuum wave functional,
Eq. (12), to (3 + 1) dimensions is straightforward: one
replaces the product Ba(x) Bb(y) by 1

2F
a
ij(x) F bij(y), and

gauge. Differences in the measured colour Coulomb potentials
in two ensembles are small, if one ensures approximately equal
population of exceptional configurations in both of them. (See
Sec. IV of Ref. [24] for details on this point.)

5 Not surprisingly, one can find also a book with Spaceland in
the title [32]. It is a science-fiction novel written by American
mathematician and computer scientist Rudy Rucker as a tribute
to Edwin Abbott’s Flatland .
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two-dimensional integrals by three-dimensional ones:

Ψ0[A] = N exp

− 1
4

∫
d3x d3y × (24)

F aij(x)

(
1√

(−D2 − λ0) +m2

)ab
xy

F bij(y)

 .
Of course, the adjoint covariant laplacian now involves
k-summation over three space directions:(
−D2

)ab
xy

= 6 δabδxy (25)

−
3∑
k=1

[
Uabk (x) δy,x+k̂ + U†bak (x− k̂) δy,x−k̂

]
.

Positive news, but. . . The wave functional (24) is
also in (3 + 1) dimensions exact in the free-field limit. It
also approximately solves the YM Schrödinger equation
in the zero-mode, strong-field limit. It is now convenient
to introduce:

L =

√
~A1 · ~A1 + ~A2 · ~A2 + ~A3 · ~A3, (26)

S =

√
( ~A1 × ~A2)2 + ( ~A2 × ~A3)2 + ( ~A3 × ~A1)2, (27)

V =
∣∣∣ ~A1 · ( ~A2 × ~A3)

∣∣∣ . (28)

Then the leading term R0 of the 1/V expansion (17) of
the exponent of Ψ0 is again given by Eq. (19) since

V

[
−

2∑
k=1

∂R0

∂ ~Ak
· ∂R0

∂ ~Ak
+ g2S2

]
= (29)

0 + g2V

(
7S4

4L4
− 3V2

L2

)
= 0 +O

(
1

V

)
for strong fields from the “abelian valley” where the com-

ponents ~A1, ~A2, ~A3 are nearly aligned, or antialigned, in
colour space.

In this same limit, the proposed VWF (24) reduces to
Ψ0 = N exp(−Q) with

Q ≈ (30)

1
4gV ( ~Ai × ~Aj)

a

(
δab

L
− δa3δb3

L
+
δa3δb3

m

)
( ~Ai × ~Aj)

b.

The first term dominates and gives V R0 ∼ O(1) as
above, the other two are of order O (1/V ) (see App. A
of Ref. [23]).

However, the transition to three space dimensions
causes complications associated with the Bianchi con-
straint that colour magnetic fields F aij have to satisfy.
Because of that constraint, direct numerical generation
of gauge-field configurations with the probability distri-
bution given by the square of the vacuum wave functional
(24) is much more challenging. I have not yet been able
to find a way of generating such configurations, similar to
the recursion method used in two space dimensions (see
Sec. II and App. B). A different approach to testing our
proposal is required.

Measurement of the ground-state wave function
in quantum mechanics Let us start with a simple
question: How can one numerically compute the wave
function of a ground-state of a one-dimensional system
with hamiltonian H in quantum mechanics? The most
direct approach is to solve the Schrödinger equation nu-
merically. A less accurate way, but useful for our pur-
poses, is to start from a simple formula:

|ψ0(x)|2 = lim
τ→∞

eE0τG(x,−iτ ;x, 0)

= lim
τ→∞

G(x,−iτ ;x, 0)∫
dξ G(ξ,−iτ ; ξ, 0)

, (31)

where G(x2,−iτ ;x1, 0) is the Green’s function (propaga-
tor) of a free particle moving from the point x1 at t = 0
to the point x2 at euclidean time (−iτ). Expressing the
ratio in Eq. (31) through path integrals in the usual way
(see e.g. Ref. [33])

G(xN = x,−iτ ;x0 = x, 0)∫
dx G(xN = x,−iτ ;x0 = x, 0)

=∫
dx1 . . . dxN−1 exp

[
−
∫ τ

0
Hdτ ′

]∫
dx1 . . . dxN−1dxN exp

[
−
∫ τ

0
Hdτ ′

] , (32)

one finally gets

|ψ0(x)|2 =
1

Z

∫
[Dξ(t)] δ [ξ(0)− x] e−S[ξ,ξ̇] , (33)

where S is the euclidean action corresponding to the
hamiltonian H. This equation expresses the wave func-
tion squared as an average of a δ-function over all paths,
a procedure that might appear totally inappropriate for
numerical computation. However, with a simple trick it
can be implemented efficiently [34], and a sample result
is displayed in Fig. 7.
The relative-weight method The method of

Greensite and Iwasaki [31] is based on a generalization
of Eq. (33) to quantum field theory. The squared VWF
of the pure YM theory is given by the path integral6:

Ψ2
0[U ′] =

1

Z

∫
[DU ]

∏
x,i

δ[Ui(x, 0)−U ′(x)] exp (−S[U ]) ,

(34)
The relative-weight method [31] enables one to compute
ratios Ψ2

0[U (n)]/Ψ2
0[U (m)] for configurations belonging to

a finite set U =
{
U

(j)
i (x), j = 1, 2, . . . ,M

}
using a simple

procedure: One performs Monte Carlo simulations with
the usual update algorithm (e.g. heat-bath) for all space-
like links at t 6= 0 and for timelike links. Once in a while
one updates the spacelike links at t = 0 all at once se-
lecting one configuration from the set U at random, and

6 One could insert into the path integral a factor imposing fixing to
lattice temporal gauge, which sets all timelike links to 1 except
on one time slice at t 6= 0. However, this gauge fixing is in fact
not necessary.
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FIG. 7. Result of a numerical determination of |ψ0(x)|2 for the

Morse potential V (x) = V0

(
e−2x − 2e−x

)
with V0 = 2 [35].

The red solid line shows the exact result, the green points are
the outcome of a Monte Carlo computation based on Eq. (33),
and dotted lines indicate the ±10% band around the exact
solution.

accepts/rejects it via the Metropolis prescription. Then,
for a large number of updates Ntot,

Ψ2
0[U (n)]

Ψ2
0[U (m)]

= lim
Ntot→∞

Nn
Nm

, (35)

where Nm (Nn) denotes the number of times the m-
th (n-th) configuration is accepted. To ensure a non-
negligible acceptance rate of Metropolis updates for all
configurations in the set U , they must lie close in config-
uration space. This limits somewhat the applicability of
the method.

If the VWF is assumed to be of the form
Ψ0[U ] = N exp(−R[U ]), then the measured values of
[− log(Nn/Ntot)] should fall on a straight line with unit
slope as function of Rn ≡ R[U (n)]. An example is shown
in Fig. ?? for a set of non-abelian constant configurations
(to be specified below).

Direct measurement of the vacuum wave func-
tional We used the relative-weight method to calculate
the squared WVF for the following two classes of lattice
gauge-field configurations:

I. Non-abelian constant (NAC) configurations:

UNAC =

{
U

(n)
k (x) =

√
1−

(
u(n)

)2
1 + iu(n)σk

}
, (36)

where

u(n) =
( κ

6L3
n
)1/4

, n ∈ {1, 2, . . . , 10}. (37)

The constant κ, regulating amplitudes of NAC con-
figurations, is selected so that the ratio of the small-
est to the largest weight within the set is not too
small, at most O

(
10−4 ÷ 10−3

)
.
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FIG. 8. [− log(Nn/Ntot)] (shifted by a constant) vs. Rn =
µκn for non-abelian constant configurations with κ = 0.14; µ
at β = 2.5 on 204 lattice was 1.60(2).

The expected dependence of relative weights on κ
and n is linear:

− log

(
Nn
Ntot

)
= Rn + const. = κn× µ+ const. (38)

The data are consistent with this expectation; the
constant µ at a given coupling β is obtained as the
slope of a linear fit of [− log(Nn/Ntot)] vs. κn, see
Fig. 9. This constant coincides with the param-
eter µ that appears in the dimensional-reduction
Ansatz (5) for the VWF.

Predictions for NAC configurations resulting from
the DR and our proposed vacuum wave func-
tional are identical (up to parameter-naming con-
ventions). Moreover, the dependence of µ on β was

-1
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FIG. 9. [− log(Nn/Ntot)] vs. xn = κn for NAC configurations
with κ = 0.14 at β = 2.4 on 244 lattice; the slope µ from a
linear fit comes out 6.04(2).
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FIG. 10. The quantity µ, extracted from computed weights
of NAC configurations, vs. the coupling β.

already computed in the pioneering work of Green-
site and Iwasaki [31] more than 25 years ago, albeit
at rather small-size lattices, 64 and 84. New re-
sults from simulations on 204 and 244 lattices con-
firm their findings, cf. Fig. 2 of Ref. [31] with our
Fig. 10. The strong-coupling prediction µ(β) = β
is confirmed at small β, and in the weak-coupling
region µ(β) behaves as a physical quantity with the
dimension of inverse mass:

µ(β)f(β) = µphys ≈ 0.0269(3), (39)

where

f(β) =

(
6π2β

11

) 51
121

exp

(
−3π2β

11

)
. (40)

II. Abelian plane-wave (APW) configurations:

UAPW = (41){
U

(j)
1 (x) =

√
1−

(
w

(j)
n (x)

)2

1 + iw
(j)
n (x)σ3,

U
(j)
2 (x) = U

(j)
3 (x) = 1

}
,

where

w
(j)
n =

√
αn + γn j

L3
cos

(
2π

L
n · x

)
, (42)

n = (n1, n2, n3), j ∈ {1, 2, . . . , 10}.

Amplitudes in a particular set of plane waves with
wave number n are parametrized by a pair (αn , γn )
and depend on integer j. For all sets, pairs of pa-
rameters were again carefully chosen so that the
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data
-0.495+0.194 xj

FIG. 11. An example plot of [− log(N
(j)
n /Ntot)] vs. 1

2
(αn +

γn j) for APW configurations.

actions of configurations with different j in the set
were not much different.

For APW configurations one expects:

− log

(
N

(j)
n

Ntot

)
= R

(j)
n + const. (43)

= 1
2 (αn + γn j)× ω(n) + const.

For a particular wave number n, one can plot

[− log(N
(j)
n /Ntot)] vs. 1

2 (αn + γn j), and determine
the slope ω(n) from a fit of the form (43). The ex-
pected linear dependence was seen in all our data
sets at all couplings, wave numbers, and parameter
choices; an example is displayed in Fig. 11.

Our main goal is to compare computed relative weights
of test configurations with predictions of the DR (5) and
GO (24) wave functionals. As already mentioned, NAC
configurations are not suitable for that purpose, they
only served us as test bed of our computer code. How-
ever, for APW the DR prediction for the dependence of
the extracted function ω(n) on the wave number n :

ω(n) ∼ µ k2(n) . . . dim. reduction (44)

differs from our form:

ω(n) ∼ k2(n)√
k2(n) +m2

. . . GO proposal, (45)

where the wave momentum k above fulfils

k2(n) = 2
∑
i

(
1− cos

2πni
L

)
. (46)

We therefore fitted our data for ω(n) at each coupling β
by the following two-parameter forms:

ω(n) =


a+ bk2(n) . . . dim. reduction,

ck2(n)√
k2(n) +m2

. . . GO proposal.
(47)
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FIG. 12. ω(n) vs. k(n) with fits of the forms (47) and (48)
for APW configurations.

The result at β = 2.5 (304 lattice) is displayed in Fig. 12
(green dashed line for DR, blue dotted one for our pro-
posal). Both forms fit the data quite well at low plane-
wave momenta, none of them is satisfactory for larger
momenta. The situation at other gauge couplings is sim-
ilar.

Considerable improvement at all couplings is achieved
by adding another parameter d to our form:

ω(n) =
ck2(n)√
k2(n) +m2

[1 + dk(n)] , (48)

see the red solid line in Fig. 12. This would correspond,
in the continuum limit, to adding a term

d

(
−D2 − λ0

(−D2 − λ0) +m2

)1/2

(49)
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FIG. 13. The combination (2c/m)f(β) of the best fit (48) to
APW data. Also displayed are values of µf(β) ≈ 0.0269(3)
extracted from NAC data.
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to the adjoint kernel K that appears in the VWF of
Eq. (24).

For constant configurations with small amplitude the
DR and GO forms coincide. For consistency between
our data for NAC and APW configurations, the value of
µNAC determined from sets of NAC configurations should
agree with the appropriate combination (2cAPW/mAPW)
of parameters obtained for abelian plane waves. Our re-
sults clearly pass this check quite successfully, as exem-
plified in Fig. 13.

Finally, the parameters of the best fit (48), c, m and d,
if they correspond to some physical quantities in the con-
tinuum limit, should scale correctly when multiplied by
the appropriate power of the asymptotic-freedom func-
tion f(β) in Eq. (40). While the scaling of the ratio
(2c/m) multiplied by f(β) has already been seen almost

perfect in Fig. 13, it is not so convincing for individual
parameters c and m/f(β), though their growth in the
range of β = 2.2 ÷ 2.5 is not large (see Figs. 14 and 15)
and one may optimistically hope that it will level off at
still higher couplings. On the other hand, the parameter
d multiplied by f(β) falls down quite rapidly in the same
region (Fig. 16). The data thus suggest that the physical
value of d might vanish in the continuum limit. This sig-
nals a possibility that the form (24) of the VWF might
be recovered in the continuum limit.

IV. Summary and outlook

Let me summarize what has been achieved until now,
both positive ( ) and negative ( ) points:

We have proposed an approximate form of the
SU(2) YM vacuum wave functional that looks
good in D = 2 + 1, somewhat worse in (3 + 1)
dimensions.

In (3+1) dimensions, a method of generating con-
figurations distributed according to the proposed
vacuum wave functional is not (yet?) available.

The method of Greensite and Iwasaki allows one
to compute numerically (on a lattice) relative
probabilities of various gauge-field configurations
in the YM vacuum.

This relative-weight method is only applicable to
compute weights of configurations rather close in
configuration space.

For non-abelian constant configurations and
for long-wavelength abelian plane waves the
measured probabilities are consistent with the
dimensional-reduction form, and the coefficients
µ for these sets agree.

Neither the dimensional-reduction form, nor our
proposal for the vacuum wave functional describe
data satisfactorily for larger plane-wave momenta.

Numerical data for test configurations are nicely
described by a natural modification of our pro-
posal, and the correction term seems to vanish in
the continuum limit.

No configurations tested so far, neither non-
abelian constant nor abelian plane waves, can be
considered typical. They are not in any sense true
representatives of fields inhabiting the YM vac-
uum.

The investigation reported in this talk could be ex-
tended in various ways:

– One should compute, by the relative-weight method,
weights of more realistic, “typical” configurations. One
can e.g. generate ensembles of configurations of the full
YM theory, take link matrices from a random time slice,
make their Fourier decomposition, switch on/off or mod-
ify individual momentum modes, and compare the ob-
tained momentum dependence of relative weights of con-
figurations with that following from our, or some other,
Ansatz for the VWF.

– It is most desirable to find a way of generating field
configurations distributed according to (the square of)

the VWF. What was possible in D = 2+1 dimensions, is
made much more complicated by the Bianchi constraint
in (3 + 1).

– If one achieved progress in the above points and
gained more evidence for the proposed form of the vac-
uum wave functional in (3 + 1) dimensions, a number
of other questions would call for an answer, e.g.: What
are the dominant field configurations in the YM vacuum?
Where do colour screening and N -ality dependence arise
from? . . .

One can just hope, on the crooked road towards under-
standing the QCD vacuum wave functional, not to run
into a “Dead End” sign.
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Appendix A: Bird’s eye view of the YM theory on
the lattice7

In the compact lattice formulation, gauge fields Aµ(x)
are represented by link matrices Uµ(x) (see Fig. 17):

Aµ(x) = Aaµ(x)Ta(x) (A1)

−→ Uµ(x) = exp[igaAµ(x)].

The field strengths Fµν(x) are related to products Uµν(x)
of link matrices along a plaquette:

Fµν(x) = F aµν(x)Ta(x) (A2)

−→ Uµν(x) = Uµ(x)Uν(x+ µ̂)U†µ(x+ ν̂)U†ν (x).

U

q

FIG. 17. Building blocks of pure Yang–Mills theory on a
lattice.

The simplest form that replaces the euclidean SU(N) YM
action

S =
1

2

∫
d4x Tr [Fµν(x)Fµν(x)] (A3)

is the Wilson action

SW = a4 β
∑
P

[
1− 1

N
Re Tr UP

]
with β = 2N/g2.

(A4)
Vacuum expectation values

〈0|Q̂|0〉 =

∫
[dU ] Ψ∗0[U ] Q̂ Ψ0[U ] (A5)

7 For more details on the lattice formulation of gauge theories see
e.g. the textbook [36].

are given by path integrals

〈Q̂〉 =
1

Z

∫
[dUµ(x)] Q[U ] exp(−SW [U ]). (A6)

In the numerical Monte Carlo simulation one computes
in fact:

〈Q̂〉 ≈ 1

Nconf

Nconf∑
i=1

Q[{Ci}], (A7)

an average over a (large) number Nconf of gauge-field con-
figurations {Ci} distributed according to the probability
distribution ∼ exp(−SW [U ]) ∼ |Ψ0[U ]|2.

Appendix B: Recursion method for simulation of the
vacuum wave functional

Let us define a probability distribution for gauge fields
A in a background of a second, independent configura-
tion A′:

P[A;K[A′]] = (B1)

N [A′] exp

[
−
∫
d2x d2y Ba(x; A) Kabxy[A′] Bb(y; A)

]
.

where A and A′ are fixed to a variant of axial gauge
(App. B of Ref. [23]). If we assume that the variance
of K is small among thermalized configurations, we can
approximate:

P [A] ≡ P[A;K[A]] (B2)

≈ P[A; 〈K〉] ≈
∫
dA′ P[A;K[A′]] P [A′].

Then the probability distribution can be generated by
solving Eq. (B2) iteratively:

P (1)[A] = P [A;K[0]] , (B3)

P (k+1)[A] =

∫
dA′ P [A;K[A′]] P (k)[A′]. (B4)

A block diagram of a practical implementation of this
recursion procedure is shown below:

Choose A1 = 0 and A2 = 0, then:
(i) given A2, set A′

2 = A2;

(ii) P [A;K[A′]] is gaussian in B,
diagonalize K[A′] and generate
a new B-field stochastically;

(iii) from B calculate A2 in axial
gauge and compute everything

of interest.

(iv)
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In the case of the kernel appearing in the vacuum wave
functional (12), the procedure converges quite rapidly,
typically in O(10) above cycles. The hypothesis about
small changes of K among equilibrated configurations is

confirmed a posteriori by the absence of large fluctua-
tions of the spectrum of K for individual recursion lat-
tices.
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